If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x^2=128^2
We move all terms to the left:
x^2+x^2-(128^2)=0
We add all the numbers together, and all the variables
2x^2-16384=0
a = 2; b = 0; c = -16384;
Δ = b2-4ac
Δ = 02-4·2·(-16384)
Δ = 131072
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{131072}=\sqrt{65536*2}=\sqrt{65536}*\sqrt{2}=256\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-256\sqrt{2}}{2*2}=\frac{0-256\sqrt{2}}{4} =-\frac{256\sqrt{2}}{4} =-64\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+256\sqrt{2}}{2*2}=\frac{0+256\sqrt{2}}{4} =\frac{256\sqrt{2}}{4} =64\sqrt{2} $
| 23=3x+4x=80=100 | | 2y+75+7((105-2y)/7)=180 | | c÷3=8 | | 50+(2y+20)=90 | | (7+z)(5z+1)=0 | | 1=1-7s-5s | | 10x-4x=-48 | | 10x-4=-48 | | 150+(x+20)=180 | | 8z+6/3=10 | | 2(x-+3)=16 | | 3(2a+1)-5a=8-3 | | −x+26=2x−10. | | 5/8x-12=1/2x=2 | | 5-7=8x-7x+6 | | -91/5y+3/2=5/15y-14/21 | | .4x=3.8 | | 14=Y-(.20*y) | | 6/2-2x/2=8x | | 7x+8=64-2x | | 14.00=Y-(.20y) | | 14.00=Y-(.208y) | | .20*y=14.00 | | Y=2x-11x+12 | | (3x+70)+(7x-10)=180 | | 2x-5/6=2 | | 2x+6/4=5x | | 10y-6y=28 | | 5-12x-25=0 | | y-(.02*y)=14 | | (4x-1)(9-x)=0 | | 2(3^3x)=31254 |